
Improving the Efficiency of the ISO Checksum Calculation

Keith Sklower

Computer Systems Research Group
Computer Science Division

Department of Electrical Engineering and Computer Sciences
University of California

Berkeley, California 94720

ABSTRACI'

In this paper we describe techniques for efficient calculation of the ISO
checksum which, to our knowledge, are not discussed in current literature. We
propose that future versions of the ISO protocols employ checksums computed
using logical "bytes" twice as large as the actual ones. Measurements are
presented comparing times required to calculate the XNSt, IP, and ISO checksums
with and without these techniques, and the proposed new checksum. Our refine
ments yield improvements of 5 to 10 per cent in speed. Our proposed replace
ment checksum can be computed twice as quickly in some instances.

1. Introduction.

The computing community in the world at large is slowly ratifying agreements for interna
tional standards for the exchange of information over networks. Such agreements sometimes are
partly political in nature, and one may be faced with the task of computing unpleasant quantities.
The checksum chosen for the first round of these international standards ([IS86], [IS87], for exam
ple) was first proposed by John Fletcher [Fl82] as a way of providing the same order of protection
as the more computationally expensive CRC algorithm. It has some interesting error detection pro
perties, but is still somewhat expensive to compute, and has a decided impact on the total
throughput of these protocols [Mc87]. Thus, even a modest improvement of five to ten percent in
the speed of checksum computation conceivably could translate to a four to eight percent increase
in transport throughput

More specifically, for a sequence of bytes b 1 through b,., Fletcher would have us perform
the following iterative calculation:

Co,.t+l = Co,.t + b.t

Cl..t+l = C1..t + Co,.t

with initial conditions C o,o = C 1,o = 0. One can easily show that these computations have the
closed form:

,.
Co = ~bi

C 1 = ~(n + 1 - i)bi

This work was sponsored in pan by Xerox Corporation, and in part by the Defense Advanced Research Projects Agency

(DoD), Arpa Order No. 4871 monitored by the Space and Naval Warfare Systems Command under contract No. N00039-

84-C-0089.

t XNS is a trademark of Xerox Corporation.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
SEP 1988 2. REPORT TYPE

3. DATES COVERED
 00-00-1988 to 00-00-1988

4. TITLE AND SUBTITLE
Improving the Efficiency of the ISO Checksum Calculation

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
In this paper we describe techniques for efficient calculation of the ISO checksum which, to our knowledge,
are not discussed in current literature. We propose that future versions of the ISO protocols employ
checksums computed using logical "bytes" twice as large as the actual ones. Measurements are presented
comparing times required to calculate the XNS, IP, and ISO checksums with and without these techniques,
and the proposed new checksum. Our refinements yield improvements of 5 to 10 per cent in speed. Our
proposed replacement checksum can be computed twice as quickly in some instances.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

9

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

- 2 -

Fletcher analyzes the protection provided by these quanuues (which he calls "check-bytes") for
detecting errors under quite general circumstances, for bytes consisting of K bits (not just eight),
and in fact considers higher order quantities, which we will not make use of. The ISO commit
tees essentially have adopted the case K = 8 and the two check-bytes Co and C 1 as providing the
basis for their checksum. More specifically, they allow space in the packets for two contiguous
bytes to be chosen so that when the two quantities Co and C 1 are computed in 8-bit, one's com
plement arithmetic for the packet as a whole, both sums are 0.

Our paper has two purposes: first, to discuss additional techniques for mustering as much
computational efficiency as we can in computing these quantities; second, to propose a modification

to this algorithm, which can double computational efficiency and greatly improve error detection

properties.

2. The 8-Bit Algorithm.

The IP and XNS checksum routines supplied with the 4.3 Berkeley Software Distribution of
UNIXt employ four techniques for reducing the time required for calculation. In papers analyzing
Fletcher's checksum algorithm (those cited above, and [Co87]), we have found references to three

of these. First one's complement arithmetic can be done by using native two's complement arith
metic for some number of iterations known not to generate any carries, followed by a reduction
step; second, reduction from 32- to 1&- or 8- bit arithmetic can be done by merely adding up the
constituent halfwords or bytes; and third, unrolling loops can contribute a substantial reduction in
processing time.

Additionally, we propose that less obvious or slightly more complex iteration algorithms that
access two bytes of memory at a time instead of one may provide additional efficiency for some

CPU's and cache architectures. (Our inspiration for this is the Internet checksum implementation
in 4.3BSD, which references memory in 4-byte accesses instead of two.)

Computer architectures can be distinguished by the manner in which pairs or quadruples of
bytes in memory serve as arithmetic operands in ALU's. In a "Big-Endian" byte-addressible

machine, when a pair of bytes b,. and b,.+1 is fetched from memory, the 1&-bit arithmetic quantity

256b,. + b,.+1 is used as the value. By contrast, a "Little-Endian" machine will let the byte with

the higher address have higher significance: the quantity b,. + 256b,.+1 is used. We'll discuss
computations on with Big-Endian machines; modifications for Little-Endians are simple and do not

affect the analysi'i.:j: Initially, our discussion is directed at computing Fletcher's quantities We'll

also limit ourselves to packets with even numbers of bytes. Suppose we have a sequence of bytes

in memory:

a,. b,.

As a notational aid, let capital letters (A;) denote 256 times the contents of the memory byte

denoted by the small letter (a;). Instead of computing C 0 and C 1 directly, we will compute two

quantities S; and Ti, which have the same values when reduced modulo 255. They are computed

iteratively by:

S; = S;-1 + (A;+b;)

T; = T;-t + S;-1 + S; + A;

or, equivalently,

T; = T;_1 + 2S; - b; ,

with initial conditions S 0 = T 0 = 0, and where (Ai +bi) is the result of fetching two bytes of

memory. Having a closed form expression for S and T will both help us to understand why they

tUNIX is a registered trademark of AT & T Bell Laboratories in lhe USA and other countries.

:j: The tenn Low-End and High-End are also used; Big-Endian appears 10 have originated with the Daniel Cohen, in In

ternet Engineering note no. 137 through the Network Information Center at SRI.

- 3 -

are equivalent to Fletcher's check-bytes, and to detennine how many iteration steps may be taken
before a carry can occur. The expression is not elegant, but can be easily verified by induction:

T,. = ~ 2(n + 1 - i)Ai + ~ (2n + 1 - 'U) bi .

Since multiplication distributes over addition and 256 is congruent to 1 mod 255, it is not hard to
see that S reduces to C 0• Persistence and diligence in re-arranging terms will convince the reader
that T reduces to C 1•

Since each term ai and bi is no bigger than 255, and by using closed form expressions for
1 + 2 + 3 + · · · + n and 1 + 3 + 5 + · · · + n, we have

T,. S 255 * [256n(n + 1) + n2]
so that T 25s S 4278059775 < 232• Consequently, no overflow can occur in 255 iterations, starting

with T 0 being 0. This bound is sharp, since in the case where all coefficients are 255,
T 256 = 4311613440 > 232.

In an actual implementation, we will have to compute the values S and T for packets longer
than 255 bytes. Every so often, we ''jolt!' the quantities S and T by replacing each by the

value obtained from adding the upper and lower 16 bits in its two's complement representation.
(Folding a quantity has no effect on the value it represents modulo 65535). The results of a fold
ing operation are bounded by the maximum values for S and T after two iterations, so no carries

can occur if an additional 253 iteration steps are made after a folding operation.

A C language implementation of our induction step might look like this:

unsigned short *wp;
long S, T, upper;

upper = *wp++;
T += S;
S += upper;
T += S;
upper &= OxffOO;
T += upper;

On CPU's such as the DEC VAX, the CO power 6, and the Motorola 68000t, this sequence
requires six machine instructions per two bytes of data, which is admittedly the same instruction

count as computing C 0 and C 1 in the standard way:

unsigned char *cp;
long CO, Cl, Reg;

Reg "" *cp++;
CO += Reg;
Cl += CO;
Reg = *cp++;
CO += Reg;
Cl += CO;

Although the instruction count is the same, the very fact of accessing memory in words may be
faster for some machine architectures, as our experiments described below will show.

- 4 -

On the DEC VAX [DE81] and on the CCI Power 6 [Ha87], which both have a special
.. double indexed" addressing mode, it is possible to perform the addition of twice S to T in a
single instruction, "move address of word". This reduces the instruction count from 6 per pair of
bytes to 5 per pair of bytes. Here the induction step would look like:

movzwl
addl2
movaw
andl2
subl2

n(rll),r8;
r8,rl0;
(r9) [rlO], r9;
$255,r8;
r8,r9

There remain two minor considerations: auto-increment, and loop control for reduction back
to 16 bits. The CCI machine does not support auto-increment addressing, so, when the induction
step is unrolled, one can use register displacement addressing with different displacements for each
step unrolled. Although the VAX family of computers supports auto-increment, it appears that cer
tain processors in the series compute this checksum more rapidly by using the method for the CCI
machine, ignoring auto-increment

For periodic reductions to 16 bits (to prevent overflow), it is convenient to test whether to
reduce at the end of the largest unrolled loop, which in our implementation passes through the data
32 bytes at a time. Although one might be tempted to decrement a counter each time through the
end of the unrolled loop (thus saving reductions for every sixth pass), it turns out to be 2 percent
faster to check two bits for simultaneously being zero in the register counting the number of bytes
remaining; even though this causes a reduction operation every fourth pass, the test is quite cheap,
there is no overhead in resetting the counter, and the reduction itself is not expensive, merely
being a store, two loads and an add.

3. The 16-Bit Algorithm.

Fletcher's original paper carries out an error analysis of his algorithm for arbitrary K bit
bytes, not necessarily just for K = 8. We would like to suggest that it may be profitable for
future versions of ISO protocols to use the algorithm with K = 16. We have determined by
measurement that the computation is significantly less costly, and show here that it has dramati
cally better error detection properties.

An interesting feature of either checksum is that for sufficiently small packets, it will detect
all double bit errors. Fletcher gives the bounding size as 2K - 1 "bytes". In the 8-bit case, this

gives 255 bytes for the packet size, somewhat less than conventional Ethernet packet sizes, for
large data transfers. In the 16-bit case, this gives us 64K 16-bit bytes or 128K 8-bit bytes.
Doubling the size of the bytes generally squares the probability of other sorts of undetected errors:
the fraction of all undetected errors is on the order of 2.37 * 1o-10 (as opposed to 1.58 * 1o-5 in
the 8-bit case). The probability of undetected 32 bit burst errors is on the order of 2-40 (com
pared with a probability of undetected 16-bit burst errors of 2-20 in the 8-bit case). These
numbers are computed from the formulas given in Fletcher's paper.

A precise statement of the algorithm would be as follows. If the packet is of an odd
number of 8-bit bytes, logically extend it with a zero byte. One then computes the two sums C 0

and C 1 using 16-bit one's complement arithmetic, thinking of each pair of bytes as a 16-bit
number. The packet has been properly prepared and transmitted if the two sums are zero.

We wish to show that the verification procedure is independent of the "Endian-ness" of the
machine. The effect of the computation being performed by a machine of the opposite Endian
ness is the same as reversing the order of every pair of bytes in the packet. We state that the

tDEC and VAX are trademarks of Digital Equipment Corporation; CCI and Power 6 are trademarks of Computer Con

soles, Incorporated; SUN is a trademark of Sun Microsystems.

- 5 -

16--bit checksum of a byte swapped packet is the same as swapping the bytes of the natively
computed checksum for the original packet The proof hinges on two observations: fli'St. if we
think of two bytes as representing a number modulo 65535, and we multiply the number by 256,
the resulting number modulo 65535 is represented by the two bytes in the opposite order; second,
multiplication distributes over sums and commutes with the multiplicative "weights" in sum C 1·

Clearly, byte-swapping zero gives zero.

As noted earlier, the way the checksum algorithm would be likely to be employed in ISO
protocols would be to have a header option, namely a type byte, length byte, and four contiguous
bytes whose values would be chosen so that both check-quantities (now 16 bits each, giving us 32
total) would be zero. It is not hard to see that if the four bytes were word-aligned, the same for
mal computation that generates the present checksum option (for 8-bit Fletcher) would work for
our replacement checksum.

Nonetheless, it is still possible to choose values for the four bytes, even in the case of odd
positioning, so that the two sums C 0 and C 1 will be zero. Using the naming scheme in the previ
ous section, let us first assume we are to adjust a sequence

bt-l at bt at+l

We ftrst replace all four bytes by zero, then compute

Co = {-w;
I~

C 1 = ~ (n + 1 - i)w; ,

where each w; is obtained by adding A; + b; as a one's complement 16--bit quantity in the Big
Endian case. This gives us two equations to satisfy:

Co + bt-l + At + b1r. + Alr.+1 = 0 ,

Ct + (k-1)bt-l +kAt + kbt + (k+l)At+l = 0

subtracting k times the first equation from the second we get

C 1 - kC o - bt-l + At+! = 0 .

This is satisfied if we let bt-l be the lower byte of C1 - kC0, and At+1 be the one's complement
of the upper byte. One can then get the other two quantities by substitution in the equation for
Co .

4. Measurements and Comparisons

We have prepared two timing tests to give some feeling for the way checksum routines
would compare under different limiting sorts of conditions. The first is the equivalent of check
summing a single 16 megabyte packet This is designed to exercise mostly the inner unrolled loop
of each algorithm. The second is checksumming 90 minutes worth of packets as found on one
large Ethernet connecting SUN workstations to me servers from trace data giving the length and
type of every packet (Gu87].

Most of the traffic on the workstation network consisted of paging and non-checksummed me
system references, which we exclude entirely in our test. The other packets were largely single
character virtual terminal packets, or acknowledgements, with about a quarter of the remaining
packets being me transfers, and mail activity. We discard the paging and me activity as being
atypical of communications over long-haul networks.

Under realistic conditions, if we had a dedicated mail gateway, although most of the data
packets would be large, there would likely to be about as many acknowledgement packets as data
packets, and acknowledgement packets are typically quite small. Thus, one would not expect to

see a mix of more than 50 percent of large packets.

- 6 -

We compared the following routines:

IP

PIP

XNS

simple

No Magic

Magic

Ediv

F16

The standard IP checksum routine for the machine.

A ''portable'' IP checksum routine accessing memory a word at a time.

The standard XNS checksum routine for the machine.

A naive ISO implementation (one byte at a time), but with loop unrolling.

Our ISO implementation (two bytes at a time), but without the "movaw" instruction

Our ISO implementation (two bytes at a time), with the "movaw" instruction.

The ISO implementation given in [Mc87] (no unrolling. using ediv, aob, etc.)

A 16-Bit Fletcher Checksum Routine.

F16-NOAI A 16-Bit Fletcher Checksum Routine without auto-increment.

null A routine merely returning 0, to measure overhead in the second test.

Each of these routines includes the mechanism (and consequent overhead) to process packets buf

fered in a segmented fashion. An anonymous reviewer of an earlier draft of this paper calls this

"the curse of 4BSD: mbufs"; an amusingly described but regrettably pertinent detail that must be

considered when trying to optimize the last iota out of checksum algorithms.

Our test bed included the following machines: CCI Power 6, Vax 8800, Vax 8600, Vax 785,

Vax 750, and Sun 3/280. In Tables 1 and 2 we show the amount of cpu time in seconds to per

form the the single huge checksum or a checksums of approximately 250,000 packets of varying

and more reasonable sizes, respectively.

TABLE 1. Times to Checksum a Single Huge Packet.

Test
Machine Type

CCI 8800 8600 785 750 Sun

IP 2.6 1.5 1.9 4.9 11.5 2.3
PIP 5.0 3.3 4.1 11.2 35.7 4.2
XNS 7.2 5.7 7.7 15.0 41.6 5.2
Simple 10.2 8.5 10.7 24.2 81.8 10.6
No Magic 8.9 8.0 9.7 25.0 79.8 9.9
Magic 11.5 7.0 9.6 29.4 84.1 t
Ediv t 13.6 18.6 34.4 95.5 t
F16 t 6.8 7.8 19.4 62.5 5.0
F16-NOAI 6.2 4.8 6.4 15.2 48.8 5.5

As one might guess, one sees less dramatic differences between protocol checksum times in

the mixed packet test than in the large packet test, due to increased overhead in the latter. It is

amusing to note that using the special machine-specific instruction pays off only on extremely suf

ficiently sophisticated CPU's, and then only for large packets. Almost in every case, the extended

Fletcher algorithm is faster than the XNS checksum, though, at best, it runs twice as slowly as an

optimized IP checksum. The regular ISO checksum can be made to run only two and a half

times more slowly than the IP checksum in the case of a realistic mix of packets, even though it

takes longer by a factor of at least 4.5 for very large packets.

t .Machine lacks addressing mode or special instruction.

- 7 -

TABLE 2. Times for checksuming a variety of packets.

Test
Machine Type

CCI 8800 8600 785 750 Sun

IP 13.2 10.3 12.8 37.5 90.8 14.3
PIP 16.7 14.5 18.4 52.0 148.0 19.6
XNS 22.8 18.7 24.7 58.7 154.2 19.0
Simple 31.3 26.1 35.6 86.0 273.3 36.0
No Magic 28.7 26.2 32.0 88.5 265.1 35.1
Magic 33.3 26.2 32.3 96.6 263.8 t
Ediv t 35.6 49.9 101.8 263.6 t
F16 t 22.1 26.6 74.9 217.5 23.5
F16-NOAI 21.7 18.3 24.2 65.6 190.0 23.5
Null 1.8 1.8 3.4 11.3 23.4 2.5

5. Conclusions.

We have proposed some alternative techniques for computing the ISO checksum. As we
have seen, not every architecture makes it worthwhile to trade more numerous or complicated
instructions instead of fewer references to data.

We have proposed a related checksum algorithm which has significantly better error-detection
properties. We showed that this checksum presents no special burden on machines of differing
"Endian-ness". Our data shows that for every machine, the proposed checksum was faster to
compute than the existing one, up to a factor of two for large packets.

For those architectures where it is faster to use more complicated instructions and reference
memory less often, one might ask, if two bytes at a time is a good thing for the standard ISO
checksum, might not four be even better? Unfonunately, we have not been able to devise an
induction step of sufficiently few instructions to make this pay off, as two instructions are required
to perform a 64-bit add on most of the machines at our disposal. However, we are tantalized by
the prospect of other machines having single instruction 64-bit arithmetic, or possibly even using
floating point arithmetic to get us a one-instruction 53-bit (i.e. mantissa-sized) register.

Lastly, we have proposed an alternative checksum algorithm which has significantly better
error detection properties than any of the existing three, and is far from the worst among them in
computational requirements.

6. References

[DE81] Digital Equipment Corpomtion, VAX Architecture Handbook, Digital Press, 1981.

[Fl82] Fletcher, J., "An Arithmetic Checksum for Serial Transmissions" IEEE Trans Com
mun., Vol. COM-30, No. 1, January, 1982, pp. 247-252.

[IS86]

[Gu87]

[Ha87]

[IS87]

[Co87]

International Organization for Standardization, "Connection oriented transpon protocol
specification", International Standard ISO 8073-I986 (E).

Gusella, R., "The Analysis of Diskless Workstation Traffic on an Ethernet", Technical
Report No. UCB/CSD 87/379, Computer Science Division (EECS), University of Cali
fornia, Berkeley.

Harris Corpomtion, HCX-7 and HCX-9 Architecture, Reference Manual, Pub. No.
0830022-100, Change 2, reissue 1.

International Organization for Standardization, "Protocol for providing the
connectionless-mode network service", Draft International Standard ISO 8473, ISO(fC
97/SC 6 N4542.

Cockburn, A., "Efficient Implementation of the ISO Transport Protocol Checksum"
ACM Comp. Commun. Rev., Vol. 17, No. 3, July/August, 1987, pp. 13-20

- 8 -

[Mc87] McCoy, W., RFC 1008. "Implementation Guide for the ISO transport protocol."

7. Appendix •• Sample Checksum routine (Little-Endian Version)

I*
* Copyright (c) 1988 Regents of the University of California.
* All rights reserved.

*
* Redistribution and use in source and binary forms are permitted
* provided that this notice is preserved and that due credit is given
* to the University of California at Berkeley. The name of the University
* may not be used to endorse or promote products derived from this
* software without specific prior written permission. This software
* is provided "as is" without express or implied warranty.

*
* @(#)os_cksum.c 1.1 (Berkeley) 312188
*I

#include "types.h"
#include "mbuf.h"

I*
* Checksum routine for ISO Protocol family headers (VAX Version).

*
* This routine is very heavily used in the network
* code and should be modified for each CPU to be as fast as possible.

*I

os_cksum(m, len)

{

register struct mbuf *m;
int len;

register u _short *w;
register int sum = 0;
register int alt = 0;
register int lower;
register int mien;

union {

} s_util;
union {

} l_util;

u char c[2];
u short s;

u_short s[2];
long I;

#derme ADDCARRY(x) (x > 65535 ? x -= 65535 : x)
#derme FOLD(x) {l_util.l = x; x = l_util.s[O] + l_util.s[l];}
#derme REDUCE(x) {FOLD(x); ADDCARRY(x);}
#define BYTECARRY(x) (x > 255 ? x -= 255 : x)

#derme BY'IEFOLD(x) {s_util.s = x; x = s_util.c[O) + s_util.c[l]; BYTECARRY(x);}

for (;m && len; m = m->m _next) {
if (m->m_len = 0)

continue;

- 9 -

w = mtod(m, u _short *);
mien = m->m_len;
if (len < mien)

mien= len;
len -= mien;
I*
* Force to even boundary.
*I

if (1 & (int) w) {

}

sum += *(u _char *)w;
alt += sum;
w = (u_short *)((char *)w + 1);
mien-;

I*
* Unroll the loop to make overhead from
* branches &c small.
*I

#derme STEP(n) {lower = w[n]; alt += sum; sum += lower; alt += sum; \
(lower &= Oxft); alt += lower;}

}

}

if (len)

while ((mien -= 32) >= 0) {

}

STEP(O); STEP(l); STEP(2); STEP(3);
STEP(4); STEP(5); STEP(6); STEP(7);
STEP(8); STEP(9); STEP(10); STEP(11);
STEP(l2); STEP(13); STEP(14); STEP(15);
w += 16;
if ((mien & 96) == 0) {FOLD(alt); FOLD(sum);}

mien+= 32;
while ((mien -= 8) >= 0) {

STEP(O); STEP(l); STEP(2); STEP(3);
w += 4;

}
mien += 8;
while ((mien -= 2) >= 0) {

STEP(O); w++;
}
if (mien = -1) {

}

sum += *(u _char *)w;
alt += sum;

FOLD(alt);
FOLD(sum);

printf("cksum: out of data\n");
REDUCE(alt); BYTEFOLD(alt);
REDUCE(sum); BYTEFOLD(sum);
rcturu ((alt << 8) + sum);

